Training on Frames
Structure & Reinforcement

Example.

① Calculate the Reactions & Draw Internal Forces Diagrams.
② Determine the critical sections in Bending & Shear For the Frame.
③ Draw Main RFT. only, making curtailment of steel using Moment of Resistance.
Draw Main RFT. & Blocks of moment of Resistance.
Calculate the Reactions & Draw Internal Forces Diagrams.

2. Determine the critical sections in Bending & Shear For the Frame.

3. Draw Main RFT. only, making curtailment of steel using Moment of Resistance.
Training on Frames
Example.

2. Determine the critical sections in Bending & Shear For the Frame.
3. Draw Main RFT. only, making curtailment of steel using Moment of Resistance.

© Copyright Eng. Yasser El-Leathy 2016. All copyrights reserved.
Downloading or printing of these notes is allowed for personal use only.
Commercial use of these notes is not allowed. (www.yasserelleathy.com)
I.F.D.

B.M.D.

N.F.D.

S.F.D.

Training on Frames
Draw Main RFT. & Blocks of moment of Resistance.
Calculate the Reactions & Draw Internal Forces Diagrams.
Determine the critical sections in Bending & Shear For the Frame.
Draw Main RFT. only, making curtailment of steel using Moment of Resistance.
Training on Frames
Draw Main RFT. & Blocks of moment of Resistance.
Training on Frames
Example.

2. Determine the critical sections in Bending & Shear For the Frame.
3. Draw Main RFT only, making curtailment of steel using Moment of Resistance.

© Copyright Eng. Yasser El-Leathy 2016. All copyrights reserved. Downloading or printing of these notes is allowed for personal use only. Commercial use of these notes is not allowed. (www.yasserelleathy.com)
I.F.D.

B.M.D.

N.F.D.

S.F.D.

Training on Frames
Page No. 22
Draw Main RFT. & Blocks of moment of Resistance.
Calculate the Reactions & Draw Internal Forces Diagrams.
Determine the critical sections in Bending & Shear For the Frame.
Draw Main RFT. only, making curtailment of steel using Moment of Resistance.
Draw Main RFT. & Blocks of moment of Resistance.
Training on Frames
Example.

2. Determine the critical sections in Bending & Shear For the Frame.
3. Draw Main RFT. only, making curtailment of steel using Moment of Resistance.
Draw Main RFT. & Blocks of moment of Resistance.
2. Determine the critical sections in Bending & Shear For the Frame.
3. Draw Main RFT. only, making curtailment of steel using Moment of Resistance.

\[X_2 = 212.7 \text{ kN} \]

\[X_2 = 212.7 \text{ kN} \]
Example.

2. Determine the critical sections in Bending & Shear For the Frame.
3. Draw Main RFT. only, making curtailment of steel using Moment of Resistance.
3) Draw Main RFT. & Blocks of moment of Resistance.
Example.

2. Determine the critical sections in Bending & Shear For the Frame.
3. Draw Main RFT. only, making curtailment of steel using Moment of Resistance.

© Copyright Eng. Yasser El-Leathy 2016. All copyrights reserved. Downloading or printing of these notes is allowed for personal use only. Commercial use of these notes is not allowed. (www.yasserelieathy.com)
I.F.Ds

B.M.D.

N.F.D.

S.F.D.

Training on Frames
Page No. 47
Example.

Calculate the Reactions & Draw Internal Forces Diagrams.
Determine the critical sections in Bending & Shear For the Frame.
Draw Main RFT. only, making curtailment of steel using Moment of Resistance.
Draw Main RFT. & Blocks of moment of Resistance.
Training on Frames
Example.

2. Determine the critical sections in Bending & Shear For the Frame.
3. Draw Main RFT. only, making curtailment of steel using Moment of Resistance.

\[X_1 = 0.302Y_1 \]
\[X_2 = 0.081Y_2 \]

\[X_1 = 212.4 \text{ kN} \]
\[Y_1 = 703.1 \text{ kN} \]
\[X_2 = 12.4 \text{ kN} \]
\[Y_2 = 153.1 \text{ kN} \]
Draw Main RFT. & Blocks of moment of Resistance.
Training on Frames
1. **Draw Internal Forces Diagrams.** (*max–max B.M.D.*)
2. Determine the critical sections in Bending & Shear For the Frame.
3. **Draw Main RFT.** only, making curtailment of steel using Moment of Resistance.

Example

- $W = 30 \, \text{kN}$
- $G = 30 \, \text{kN}$
- $P = 20 \, \text{kN}$
- $g = 6.0 \, \text{kN/m}$
- $w = 30 \, \text{kN}$
- $c = 40 \, \text{kN}$
- $p = 30 \, \text{kN}$
- $g = 10 \, \text{kN/m}$
- $p = 15 \, \text{kN/m}$

Statical System
I.F.D.

Case ①

D.L. T.L.

30 kN 30 kN

70 kN 70 kN 70 kN 70 kN

W = 30 kN
wind

30 kN

310 kN

270 kN

B.M.D.

112.5

112.5

22.5

157.5

180

540

487.5

N.F.D.

30

310 75

310 270

(-) (-)

(-) (-)

(--)

(--)

Training on Frames
Page No. 62
Critical sections فقط لتحديد أماكن ال max–max B.M.D. و ليس لتصنيح ال Frame و لكن لتصنيح ال Frame نصلح على أي حاله تحميل أولا ثم نكمل باقي التشريحة على حاله التحميل الأخرى.